Bleaching of Nonvital Teeth
A Clinically Relevant Literature Review

Key words: bleaching, nonvital teeth, walking bleach technique, root resorption

Introduction

Discolored anterior teeth are often perceived as an esthetic detraction. Because of the growing need for beautiful, white teeth and the establishment of esthetic treatment methods, the bleaching of nonvital teeth has become increasingly important in recent years. In the middle of the 19th century, the first attempts were made to lighten discolored teeth using various agents. Initially, oxalic acid was used, until the tooth-bleaching effect of hydrogen peroxide was discovered in 1884 (Goldstein 1997). The bleaching of nonvital teeth was first mentioned by Garretson in 1895, who used chlorine as the bleaching agent (Fasanaro 1992). However, it wasn’t until 1951 that hydrogen peroxide was used to bleach nonvital teeth (Pearson 1951). The bleaching of nonvital teeth is a minimally invasive intervention which, if performed correctly, bears only slight risks.

Nevertheless, contradictory opinions and unanswered questions exist about this method. This paper reviews the current literature, presenting both the causes of discoloration in nonvital teeth and the treatment options, as well as degrees of success. In addition, focus is placed on possible side effects of these treatment options and the dentist’s resulting obligation to thoroughly inform patients.

Materials and Methods

An Internet literature search in PubMed was started (status: January 2009), using the following search words (total hits/number of processed articles in text/articles already covered by previous search words): walking bleach (51/14/0), endodontic bleaching (47/8/4), internal bleaching of teeth (64/10/5), intracoronal tooth bleaching (75/10/5), inside/outside bleaching of teeth (5/3/2), resorption and bleaching (89/20/13), risks and tooth bleaching (51/9/9), endodontics and discolorations (216/20/9) /discolorations (9/2/1), intrinsic tooth discoloration (57/2/1). Only original papers and reviews were evaluated and discussed. Case reports were cited according to their clinical relevance. Abstracts were not included in this paper. A manual search was performed after the original articles had been read.
References on this topic were processed. Additionally, the articles in PubMed were used in the category “related articles” to complete the article search. Predominantly articles from the last ten years were analyzed, but older studies were cited if they were judged to be currently relevant.

Etiologically intrinsic discolorations
Discolorations can be of extrinsic or intrinsic origin. External discolorations result from the consumption of certain foods, beverages, or tobacco products (or similar), as well as from inadequate oral hygiene or certain oral hygiene products. Moreover, a thinning of the dental enamel during aging also darkens the tooth (Watts & Addy 2001). An intrinsic discoloration is defined as one with its origin within the pulp chamber. This includes hemorrhage, necrosis, calcification, and iatrogenic discoloration due to dental treatment (Tab.).

Hemorrhage of the pulp is the most common cause of discoloration after trauma. Blood enters the dentinal tubules and then decomposes. This leads to a deposit of chromogenic blood degradation products, such as hemosiderin, hemine, hematin, and hematinid (Aren 1989). Pulp extirpation also provokes hemorrhaging into dentin (Arens 1989). In the same manner, pulp necrosis can give rise to chromogenic degradation products. In an in vitro study, teeth were treated with whole blood, erythrocytes, blood plasma with platelets, or saline solution. The strongest discolorations occurred in the group treated with erythrocytes, blood plasma with platelets, or saline solution. In all discolored samples, the presence of hematin, hemoglobin, and hemosiderin was histochemically detected (Marin et al. 1997). Aside from blood degradation products, protein degradation products of pulpal tissue are also responsible for discolorations.

The calcification of the pulp causes discoloration through obliteration of the dentinal tubules and buildup of tertiary dentin (Watts & Addy 2001), but the tooth remains vital. This process occurs often following trauma. Other factors, such as abrasion, erosion, or iatrogenic irritations can also stimulate the vital pulp to initiate obliteration processes (Thordarson et al. 1991).

A number of dental interventions can cause internal discoloration. If the pulpal tissue is not completely removed during endodontic treatment, the remaining tissue can lead to discoloration (Brown 1965, Faunce 1983). Irrigants, root-canal restorative materials, and other restorative materials can also cause discoloration. Combining irrigants which contain sodium hypochlorite (even at low concentrations) and chlorhexidine leads to brownish-red precipitates (Basrani et al. 2007). In order to prevent this reaction, a separate rinse between the other two must be performed, for instance, with Ringer’s solution or distilled water. A reddish-brown precipitation reaction is also observed when rinsing with Biopure MTAD® (mixture of tetracycline, citric acid, and detergent) is performed after irrigation with sodium hypochlorite (Tay et al. 2006).

The type of root-canal filling material and medication agent play a role in the discoloration tendency of the tooth (van der Burt & Plasschaert 1985, 1986, van der Burt et al. 1986a, b). Especially products containing tetracycline are prone to discoloring the tooth. A well-known example of this is Ledermix® (Kim et al. 2000a, b). Increased discoloration is observed when these products are left in the region of the pulpal cavity (Kim et al. 2000a, b). Even calcium hydroxide can lead to discoloration of the dentin during revisions of root-canal fillings. Calcium-hydroxide staining was much more pronounced than when camphormonochlorophenol was used (Tinaz et al. 2008).

Depending on the material, discolorations caused by endodontic filling materials are bleachable (van der Burt & Plasschaert 1986). In an in vitro study, discoloration was found for all the tested root-canal sealers after three, six, and nine months. The tooth discoloration was always most pronounced in the cervical third. Of the tested products, EndoSol® demonstrated the greatest discoloration tendency, followed by zinc-oxide eugenol, Tubuliseal®, AH 26®, gutta-percha, Apatite Root Sealer® and Cavizol®. The least discoloration was seen in the control group with distilled water (Partovi et al. 2006). In that study, these tooth discolorations occurred despite the fact that the sealer did not penetrate into the dentinal tubules. Tooth discoloration following sealer application showed a progression over twelve months in an in vitro trial (Parsons et al. 2001). Although mineral trioxide aggregate (MTA) possesses excellent biocompatibility (Ribeiro et al. 2005, Ribeiro et al. 2006), this gray-colored material leads to undesirable tooth discolorations in the esthetic region of the dentition (Bortoluzzi et al. 2007). A case report exists about discoloration of hard dental tissues after the application of white MTA (Jacobowitz & de Lima 2008). It is thus assumed that even with white MTA, discoloration occurs due to the iron oxidation process (tetracalcium aluminum ferrite).

Mechanism of bleaching
Discolorations arise due to the formation of chemically stable, chromogenic products. Pigments consist of long-chain organic molecules. In bleaching, these compounds are oxidized: they are split into smaller molecules which are usually lighter. During bleaching, the long-chain organic molecules are transformed into carbon and water, and – together with nascent oxygen – are released.

Some manufacturers recommend the additional application of heat or light. The application of heat in the pulpal cavity must be considered problematic (+root resorption). The use of a diode laser did not improve the bleaching result compared to light application with a halogen lamp (Conti et al. 2008). However, the use of the halogen lamp was always more pronounced, marked temperature increase in the root canal, and the bleaching effect was not better than that with the walking bleach technique (Carrasco et al. 2007).

Bleaching agents
Tooth bleaching agents are classified by the Federal Health Office of Switzerland and the Medications Institute Swissmedic as cosmetics. This stipulates that patients can directly acquire products with a maximum of 6% hydrogen peroxide or an equivalent amount of other oxygen-releasing agents. Products with a higher concentration of such agents are approved only for professional use (dentist).
Hydrogen peroxide \((\text{H}_2\text{O}_2)\) is an effective bleaching agent. Nevertheless, high concentrations (> 30%) should only be used with caution, in order to avoid increasing the risk of root resorption (Attin et al. 2003).

Sodium perborate occurs in the form of mono-, tri- \((\text{NaBO}_2\cdot \text{H}_2\text{O}_2)\) or tetrahydrate. Upon adding water, \(\text{H}_2\text{O}_2\) is released. The bleaching effect is not weakened if sodium perborate is mixed with water instead of hydrogen peroxide (Rotstein et al. 1993, ARI & Ungör 2002).

Currently, there are very few studies on the use of sodium percarbonate \((2\text{Na}_2\text{CO}_3 \cdot \text{H}_2\text{O}_2)\). This agent was long ignored, as its stability during storage was very poor. Thanks to a coating procedure, this product now stores well and is a marketable bleaching agent. An in vitro study found the bleaching effect of sodium percarbonate (mixed with water) to be similar to that of 30% hydrogen peroxide (Kaneko et al. 2000). However, clinical studies are still lacking.

Carbamide peroxide \((\text{CH}_4\text{N}_2\text{O} \cdot \text{H}_2\text{O}_2)\) is an organic compound containing hydrogen peroxide and urea. In an in vitro test, carbamide peroxide showed a bleaching ability equal to that of hydrogen peroxide (Lim et al. 2004). Products which contain 10% carbamide peroxide release 3.5% hydrogen (Goldstein & Kiremidjian-Schumacher 1993).

Indications for internal bleaching

All discolorations which arise due to metal ions (silver pins, amalgam fillings) are not reliably bleachable with today's methods (Plotino et al. 2008).

In contrast, all other discolorations can be removed, often with remarkable results (Figs. 1, 2). Today, clinical practice has taught us that a satisfactory color change can be brought about by a maximum of three applications of bleaching agent.

A sealed root-canal filling is an important requirement for allowing an endodontically treated tooth to be bleached. The tooth must be symptom-free, but a waiting period is called for in the case of a radiologically detectable periapical radiolucency. Such lesions should be observed to determine whether the alteration is increasing or if a healing process is apparent. In every case, the root-canal filling material should be sealed with a base material, in order to prevent penetration of the bleaching agent into the periodontal space or root canal (De Oliveira et al. 2003). The ubiquitous cements used to close perforations must also be covered with a base. Particularly MTA exhibits a much-reduced marginal seal when it comes into contact with bleaching agents (Loxley et al. 2003). Prior to bleaching, insufficient coronal restorations must be replaced by restorations providing an excellent marginal seal.

Root resorptions

Where the remaining dentin walls are very thin, it is recommended that only low concentrations of bleaching agent be applied, or that sodium perborate be mixed with distilled water, in order to effect the bleaching of the tooth (Dietschi 2006). This is intended to prevent the bleaching agent from entering the periodontal space through the ubiquitous microperforations and thus causing inflammation which can facilitate root resorption. The etiology of root resorptions has yet to be comprehensively explained. The incidence mentioned in the literature varies greatly, from 1% to 13% (Harrington & Natkin 1979, Ladd et al. 1983, Cvek & Lindwall 1985, Latcham 1986, 1991, Heitersay et al. 1994). The general recommendation today is not to heat the bleaching agent in the access cavity and thus forego its thermocatalytic activation, because heat can damage periodontal tissue and lead to an increased resorption rate at the root surface (Friedman 1997, Attin et al. 2003). Furthermore, a marked increase in hydrogen peroxide on the tooth’s exterior surface has been measured when the bleaching agent is heated in the pulp cavity (Dahlstrom et al. 1997, Farmer et al. 2006). It is advantageous to cover the root-canal filling material with a base in order to prevent resorptions. The importance of this cervical sealing has been extensively documented. For instance, no root resorptions were observed over a 20-year period in a practice where 30% hydrogen peroxide was used with correct cervical sealing (Dietschi 2006). However, as a case report, this outcome must be viewed critically. Cervical resorptions can occur more frequently with higher concentrations of bleaching agent, past trauma, and the application of heat (thermocatalytic method) (Heitersay et al. 1994, Friedman 1997, Attin et al. 2003). Studies in Australia, in which bleaching was performed with 30% hydrogen peroxide and heat application, found that 2% of all teeth followed up exhibited cervical resorptions. In all cases of resorption, a prior tooth trauma had occurred (Heitersay et al. 1994). In examinations of cervical root resorption, it was shown that orthodontic treatment is responsible for the majority of cervical resorptions (24.1%), with tooth trauma being the second most common predisposing factor for cervical resorptions (15.1%) (Heitersay 1999). Defects at the cemento-enamel junction increase the penetration of bleaching agent into the periodontal space (Rotstein et al. 1991a). There is no case report documenting cervical resorption after vital tooth.
bleaching. By adding thiocarbamide (radical scavenger) to hydrogen peroxide, the amount of hydrogen peroxide penetrating through the dentinal tubules was greatly reduced (Farmer et al. 2006).

Recurrence
The recurrence rate in bleached, endodontically treated teeth is relatively high, and the mechanism has not been completely elucidated. Depending on the study, the reported recurrence rate after two years is 10%, after five years 25%, and after eight years 49% (Friedman 1997, Friedman et al. 1988, Holmstrup et al. 1988, Glockner et al. 1999). The outcome in another study is sobering: six years after bleaching, a success rate of 45% was documented; the conclusion was drawn that bleaching nonvital teeth does not constitute a long-term solution in the permanent dentition (Feigin 1987). However, that study is relatively old, and bacterial management during bleaching procedures was not adequately performed. Moreover, the fillings were largely placed without the adhesive technique, which led to increased penetration of pigments. It is known that most discoloration of nonvital teeth arises as a result of degradation products of hemoglobin and pulpal tissue (Arens 1989). Then as now, it is not clear whether the recurrence of discoloration in bleached teeth is caused by the same substances or by penetration of pigments from the oral cavity. Observations from daily practice indicate that bleaching success has largely been modest, or discoloration recurrence happened quickly if the tooth became discolored relatively soon after endodontic treatment (Dietschi 2006). In a long-term follow-up of 35 patients, 22 cases (62.9%) presented satisfactory results 16 years after bleaching treatment (combined method: in-office bleaching with subsequent walking bleaching). In 13 patients (37.1%), the result was no longer satisfactory and obvious darkening had taken place. No root resorptions occurred (Amato et al. 2006). In contrast, another study using the same bleaching technique found darkening of up to four shades on the VITA color scale in just under 50% of the 26 bleached teeth (Deliperi & Bardwell 2005). In part, dentists judge bleaching success much more critically than do patients. After a 5-year observation period, 75% of the cases were judged as successful by the dentist, while 98% of the patients were satisfied with the results (Glockner et al. 1999).

Technique
Prior to bleaching, each case should be photodocumented (Fig. 1), including a color key (Fig. 3), to objectively the result and make treatment success verifiable. The patient must be informed of the risks of the treatment and alternative treatment methods. It is important that the patient be aware that existing restorations may not be bleachable and therefore subsequent costs may arise if the old restorations no longer match the color of the teeth after bleaching (Fig. 4). There is no guarantee that bleaching will be successful. The patient must be informed about the usual allergies to composites, plastics, latex, and peroxide. No bleaching agents may be used in pregnant or lactating women. Careful consideration is also called for with children and adolescents. In every case, the permission of the parent or legal guardian is required, and the child her- or himself must express the desire for bleaching treatment because of suffering from the discoloration of the nonvital tooth. A good cervical seal is decisive in young teeth, as the diffusion rate of the bleaching agent through the tooth is much higher than in older patients (Camps et al. 2007). Although a case report exists on the bleaching of nonvital deciduous teeth (Bussadori et al. 2006), the authors of the article reject this form of treatment due to lack of compliance and a high cost:benefit ratio. This treatment approach does not seem practical. The patient must be informed that by preparing a new access cavity, an increased risk of tooth fractures exists during treatment, and that the tooth to be bleached must not be loaded too heavily (Baratieri et al. 1995).

There are basically three different options for lightening nonvital teeth: the walking bleach, inside/outside bleaching and the in-office bleaching techniques. These three techniques are presented in the following, including clinical procedure, time requirements, and risks.

Walking bleach technique
This bleaching technique was first described by Spasser (Spasser 1961). Sodium perborate is mixed with water into a paste and then inserted into the access cavity. Later, the technique was modified by mixing sodium perborate with hydrogen peroxide and inserting this into the access cavity (Nutting & Poe 1967). It was subsequently shown that there is no difference in effectivity between these two methods (Holmstrup et al. 1988, Rottstein et al. 1991b, Åri & Ungör 2002). An improvement was found in vitro when sodium perborate was mixed with carbamide peroxide instead of with distilled water. It made no difference if carbamide peroxide was used in concentrations of 10% or 35% (Yui et al. 2008). In the walking bleach tech-
nique, first a tissue-conserving access cavity is made such that the entire pulpal cavity is visible and cleanable (Fig. 5). The root-canal filling material is shortened 2–3 mm subgingivally. This is controlled using a periodontal probe (Fig. 6). An impermeable base is laid on the root-canal filling material (resin-modified glass-ionomer cement [RMGIC], such as Vitrebond®, or conventional GIC). The application of a RMGIC showed a better apical seal than conventional GIC (De Oliveira et al. 2003). The pulpal cavity must be free of root-canal filling material. The bleeding gel is inserted into the tooth and the access cavity is sealed to the outside with a provisional filling. While investigating different provisional filling materials, the question was also asked whether covering the bleeding agent with rubber (small piece of rubber-dam) would additionally improve the sealing of the cavity. The dye penetration test showed no significant difference between the use of a rubber covering and the direct provisional closure. Cavit and Coltosol used as provisional restorative materials were better than Fermit, and this was better than zinc-oxide eugenol and zinc-oxide phosphate cement (Hosoya et al. 2000). Ideally, a provisional adhesive restoration is placed, because this improves the seal against bacterial penetration.

After a few days, the bleeding result is examined and, if needed, bleeding agent is again inserted into the access cavity. A recent study attempted – based on the diffusion rate of hydrogen in dentin – to determine the ideal timepoint for reapplying bleeding agent. Given the different structure of young and old dentin, the researchers determined an ideal application time of 33 hours for young patients and 18 hours for older patients (Camps et al. 2007). After completion of bleeding agent application, the results should be photodocumented, which also serves to evaluate long-term success (Figs. 2, 4, 7 and 8). Instead of sodium perborate, carbamide peroxide or hydrogen peroxide can also be used for the walking bleach technique, using the same procedure described above (Vachon et al. 1998). 37% carbamide peroxide shows the best penetration into dentin, while sodium perborate mixed with 20% hydrogen peroxide or 27% carbamide peroxide does not penetrate as deeply into dentin (Carrasco et al. 2003). In another study, in order to improve penetration into dentin, the access cavity was first etched with phosphoric acid so that the dentin tubules were slightly opened. However, this did not improve results, at least with more highly concentrated bleaching agents (Casey et al. 1989). Bleaching success seems largely dependent on the application duration of the bleeding agent. For this reason, this bleaching method often performs better than the in-office technique (Dietschi et al. 2006). After the desired bleaching result has been obtained or slightly surpassed, sometimes an application of calcium hydroxide is recommended in order to diminish oxygen inhibition of the polymerization of the definitive composite filling, and to counteract the increased permeability of the dentin caused by the bleaching agent (Demarco et al. 2001) as well as raise the low pH value in the cavity (Kehoe 1987). However, the authors of this article assign little clinical relevance to increasing the pH in this way due to the great buffering capacity of the dentin. The bond strengths

Fig. 5 The access cavity is kept as small as possible. Discolored dentin is not removed. Same case as in Fig. 1.

Fig. 6 The root filling material is shortened 2–3 mm subgingivally. The depth of the access cavity is checked with a periodontal probe.

Fig. 7 Follow-up examination nine months after bleaching. During that period, the lateral incisors were widened using composite.

Fig. 8 Follow-up three months after bleaching. The patient did not want new composite restorations.
of adhesive systems to dentin were not found to be negatively influenced by sodium perborate, hydrogen peroxide or carbamide peroxide compared to the unbleached control group (Müller Arcari et al. 2007). This is contrary to other investigations, in which bleaching agents markedly reduced bond strengths (Lai et al. 2002). Instead of a waiting interval between bleaching agent application and restoration, an ascorbic acid solution (10%) can be used to promote normal adhesive bond strengths (Lai et al. 2002). Additionally, it has been shown that ethanol and aceton in the adhesive systems negate the inhibiting effect of bleaching agent on polymerization (Barghi & Goldwin 1994, Sung et al. 1999).

Hydrogen peroxide (30%) can have a detrimental effect on the microhardness of enamel and dentin. For dentin, the hardness reduction was significant after just a 5-minute application time of the bleaching agent (Lewinstein et al. 1994). In contrast, the use of sodium perborate combined with hydrogen peroxide did not alter the hardness. These results were further confirmed in a more recent study. It was found that not only 35% hydrogen peroxide gel and 30% hydrogen peroxide solution but also 35% carbamide peroxide gel decrease the microhardness of the external dentin layer; this influence was, however, relatively slight. The application of sodium perborate (mixed with water or 30% hydrogen peroxide) in the pulp cavity had no influence on the microhardness of dentin (Ching et al. 2004).

Inside/outside Bleaching

This technique was first described by Settembrini et al. (Settembrini et al. 1997) and was later modified (Liebenberg 1997). As the name implies, the idea is to apply bleaching agent both on the external and internal surfaces of the tooth. The access cavity remains open during the entire treatment process. One advantage of this technique is that a low concentration of bleaching gel is sufficient to obtain the desired effect. First, a vacuum-drawn splint is made with reservoirs oral and vestibular to the tooth to be bleached. On the directly adjacent teeth, the model is ground down slightly in order to ensure that the bleaching splint fits these teeth tightly and prevents them from accidental exposure to bleaching gel. The fitting accuracy of the splint is checked on the patient. The access cavity is made as in the walking bleach technique. An impermeable base is attached and 30% hydrogen peroxide is applied onto and in the pulpal cavity. The access cavity had no influence on the microhardness of dentin (Ching et al. 2004).

In-Office Bleaching

This method is well-known from bleaching vital teeth, but it can also be employed for nonvital teeth. However, the predictability of the method is rather low. Chairside, rubber-dam is attached and 30% hydrogen peroxide is applied onto and in the tooth. Preparation of the access cavity and sealing of the root-canal is performed as in the walking bleach technique. After an application time of 15–20 minutes during which the bleaching gel is moved, the gel is rinsed off and the procedure is repeated, if necessary. The patient must wear protective eyeglasses to prevent droplets from contacting the eyes. Regretfully, the desired bleaching effect is often ephemeral, since the color lightening is primarily produced by the tooth's dehydration under the rubber-dam. This agrees with experience gained in bleaching vital teeth. Here, too, the long-term success of at-home bleaching (longer application time by wearing a splint) is much better than that of in-office bleaching (Dietschi et al. 2006). An analysis of different bleaching methods of vital teeth showed that patients prefer at-home to in-office bleaching due to the shorter treatment time at the dentist's office (Auschill et al. 2005). When using this method, a relatively large amount of hydrogen remains in the cavity due to the shorter, more concentrated application time; thus, the definitive closure of the access cavity should be performed in a subsequent appointment. The remaining hydrogen can also be completely eliminated in three minutes by applying catalase or other substances (e.g., ascorbic acid) (Rotstein 1993, Lai et al. 2002).

Discussion

Given the appropriate indication, the bleaching of nonvital teeth is a relatively low-risk intervention to improve the esthetics of endodontically treated teeth. Depending on the situation, the walking bleach technique can be an uncomplicated and convenient method for both patients and dentists. In-office bleaching can often only produce short-term success, based largely on the dehydration of the tooth. The risk of root resorption cannot be exactly determined given the available data. Nevertheless, it seems clear that dental trauma favors cervical resorptions, and that this factor is probably more important than the application of bleaching agent. Sufficient cervical sealing and avoidance of the thermodamalactic method can minimize the risk of resorptions. Further development of the conventional bleaching agents by adding radical scavengers such as thiocarbamide or using sodium percarbonate seems promising in terms of minimizing the penetration of hydrogen into the periodontal space. Subsequent studies on the factors which favor the recurrence of discoloration after bleaching are certainly indicated.

Résumé

Le blanchiment des dents dont les racines ont été traitées pour améliorer l’aspect esthétique chez le patient est un traitement sans grand risque. Ce papier traite des causes de changements de couleur, des différentes techniques de traitement et des risques pour le patient. Quelques causes pour les décolorations...
peuvent être influencées par le dentiste. Les trois méthodes les plus populaires pour la décoloration sont le washing bleaching, l’inside/outside bleaching et les méthodes de blanchir les dents directement dans le cabinet dentaire. La technique du washing bleaching est la technique la plus éprouvée et la moins pénible tant pour le dentiste que pour le patient. La technique de inside/ outside bleaching peut être appliquée en combinaison avec un blanchiment des dents vitales et non vitales. Il existe encore des questions concernant les médicaments pour la décoloration. Des améliorations dans l’aspect de la sécurité restent possibles avec l’addition de thio-urée comme capteur de radi-
Pearson H H: Successful bleaching without secondary discoloration. J Can Dent Assoc (Tor) 17: 200–201 (1951)